EconPapers    
Economics at your fingertips  
 

Electronic structures of doped BaFe2As2 materials: virtual crystal approximation versus super-cell approach

Smritijit Sen () and Haranath Ghosh
Additional contact information
Smritijit Sen: Homi Bhabha National Institute, Anushaktinagar
Haranath Ghosh: Homi Bhabha National Institute, Anushaktinagar

The European Physical Journal B: Condensed Matter and Complex Systems, 2016, vol. 89, issue 12, 1-12

Abstract: Abstract Using virtual crystal approximation and super-cell methods for doping, a detailed comparative study of electronic structures of various doped BaFe2As2 materials by first principles simulations is presented. Electronic structures remain unaltered for both the methods in case of passive site doping but in case of active site doping, the electronic structure for virtual crystal approximation method differ from that of the super-cell method specially in the higher doping concentrations. For example, both of these methods give rise to a similar density of states and band structures in case of hole doping (replacing K in place of Ba) and isovalent P doping on As site. But in case of electron doped (Co in place of Fe) systems with higher doping concentration, electronic structures calculated using virtual crystal approximation approach deviates from that of the super-cell method. On the other hand, in case of low isovalent Ru doping at the Fe site implemented by virtual crystal approximation, one acquires an extra shift in the chemical potential in comparison to that for the super-cell method. This shift may be utilized to predict the correct electronic structure as well as the calculated Fermi surfaces within virtual crystal approximation. But for higher Ru (that has different electronic configuration than Fe) doping concentration, simple shifting of chemical potential fails, the calculated electronic structure via virtual crystal approximation approach is very different from that by the super-cell formalism.

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2016-70446-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:89:y:2016:i:12:d:10.1140_epjb_e2016-70446-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2016-70446-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:89:y:2016:i:12:d:10.1140_epjb_e2016-70446-2