Coevolution of information processing and topology in hierarchical adaptive random Boolean networks
Piotr J. Górski,
Agnieszka Czaplicka and
Janusz A. Hołyst ()
Additional contact information
Piotr J. Górski: Faculty of Physics, Center of Excellence for Complex Systems Research, Warsaw University of Technology
Agnieszka Czaplicka: Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)
Janusz A. Hołyst: Faculty of Physics, Center of Excellence for Complex Systems Research, Warsaw University of Technology
The European Physical Journal B: Condensed Matter and Complex Systems, 2016, vol. 89, issue 2, 1-9
Abstract:
Abstract Random Boolean Networks (RBNs) are frequently used for modeling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive random Boolean Network (HARBN) as a system consisting of distinct adaptive RBNs (ARBNs) – subnetworks – connected by a set of permanent interlinks. We investigate mean node information, mean edge information as well as mean node degree. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. The main natural feature of ARBNs, i.e. their adaptability, is preserved in HARBNs and they evolve towards critical configurations which is documented by power law distributions of network attractor lengths. The mean information processed by a single node or a single link increases with the number of interlinks added to the system. The mean length of network attractors and the mean steady-state connectivity possess minima for certain specific values of the quotient between the density of interlinks and the density of all links in networks. It means that the modular network displays extremal values of its observables when subnetworks are connected with a density a few times lower than a mean density of all links.
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2015-60530-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:89:y:2016:i:2:d:10.1140_epjb_e2015-60530-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2015-60530-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().