EconPapers    
Economics at your fingertips  
 

Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer

Florent Calvo () and Yann Magnin

The European Physical Journal B: Condensed Matter and Complex Systems, 2016, vol. 89, issue 3, 1-9

Abstract: This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a(T) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Keywords: Solid State and Materials (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1140/epjb/e2016-60839-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:89:y:2016:i:3:p:1-9:10.1140/epjb/e2016-60839-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2016-60839-6

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:89:y:2016:i:3:p:1-9:10.1140/epjb/e2016-60839-6