Optimal signal-to-noise ratio in stochastic time-delayed bistable systems
Shilong Gao ()
Additional contact information
Shilong Gao: College of Mathematics and Information Science, Leshan Normal University
The European Physical Journal B: Condensed Matter and Complex Systems, 2016, vol. 89, issue 4, 1-6
Abstract:
Abstract We study the optimal signal-to-noise ratio in a stochastic time-delayed bistable system. By using the small delay approximation, we transform the time-delayed system into stochastic nondelayed differential equations to obtain the analytic expressions of the signal-to-noise ratio in different mechanisms. In the valid range of small delay approximation, we compare the peak values of signal-to-noise ratio curves and obtain the optimal signal-to-noise ratio. From the results, we find that the interplay of time delay and noise has a great influence on time-delayed bistable systems.
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2016-70021-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:89:y:2016:i:4:d:10.1140_epjb_e2016-70021-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2016-70021-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().