Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model
Klaus M. Frahm ()
Additional contact information
Klaus M. Frahm: Laboratoire de Physique Théorique, Université de Toulouse, CNRS
The European Physical Journal B: Condensed Matter and Complex Systems, 2016, vol. 89, issue 5, 1-26
Abstract:
Abstract The localization properties of eigenfunctions for two interacting particles in the one-dimensional Anderson model are studied for system sizes up to N = 5000 sites corresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. The eigenfunction structure is illustrated in position, momentum and energy representation, the latter corresponding to an expansion in non-interacting product eigenfunctions. Different types of localization lengths are computed for parameter ranges in system size, disorder and interaction strengths inaccessible until now. We confirm that one-parameter scaling theory can be successfully applied provided that the condition of N being significantly larger than the one-particle localization length L 1 is verified. The enhancement effect of the two-particle localization length L 2 behaving as L 2 ~ L 2 1 is clearly confirmed for a certain quite large interval of optimal interactions strengths. Further new results for the interaction dependence in a very large interval, an energy value outside the band center, and different interaction ranges are obtained.
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2016-70114-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:89:y:2016:i:5:d:10.1140_epjb_e2016-70114-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2016-70114-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().