Statistical properties of Olami-Feder-Christensen model on Barabasi-Albert scale-free network
Hiroki Tanaka () and
Takahiro Hatano
Additional contact information
Hiroki Tanaka: Earthquake Research Institute, University of Tokyo
Takahiro Hatano: Earthquake Research Institute, University of Tokyo
The European Physical Journal B: Condensed Matter and Complex Systems, 2017, vol. 90, issue 12, 1-12
Abstract:
Abstract The Olami-Feder-Christensen model on the Barabasi-Albert type scale-free network is investigated in the context of statistical seismology. This simple model may be regarded as the interacting faults obeying power-law size distribution under two assumptions: (i) each node represents a distinct fault; (ii) the degree of a node is proportional to the fault size and the energy accumulated around it. Depending on the strength of an interaction, the toppling events exhibit temporal clustering as is ubiquitously observed for natural earthquakes. Defining a geometrical parameter that characterizes the heterogeneity of the energy stored in the nodes, we show that aftershocks are characterized as a process of regaining the heterogeneity that is lost by the main shock. The heterogeneity is not significantly altered during the loading process and foreshocks.
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2017-80295-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:90:y:2017:i:12:d:10.1140_epjb_e2017-80295-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2017-80295-0
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().