EconPapers    
Economics at your fingertips  
 

First-order transitions and thermodynamic properties in the 2D Blume-Capel model: the transfer-matrix method revisited

Moonjung Jung and Dong-Hee Kim ()
Additional contact information
Moonjung Jung: School of Physics and Chemistry, Gwangju Institute of Science and Technology
Dong-Hee Kim: School of Physics and Chemistry, Gwangju Institute of Science and Technology

The European Physical Journal B: Condensed Matter and Complex Systems, 2017, vol. 90, issue 12, 1-10

Abstract: Abstract We investigate the first-order transition in the spin-1 two-dimensional Blume-Capel model in square lattices by revisiting the transfer-matrix method. With large strip widths increased up to the size of 18 sites, we construct the detailed phase coexistence curve which shows excellent quantitative agreement with the recent advanced Monte Carlo results. In the deep first-order area, we observe the exponential system-size scaling of the spectral gap of the transfer matrix from which linearly increasing interfacial tension is deduced with decreasing temperature. We find that the first-order signature at low temperatures is strongly pronounced with much suppressed finite-size influence in the examined thermodynamic properties of entropy, non-zero spin population, and specific heat. It turns out that the jump at the transition becomes increasingly sharp as it goes deep into the first-order area, which is in contrast to the Wang–Landau results where finite-size smoothing gets more severe at lower temperatures.

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2017-80471-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:90:y:2017:i:12:d:10.1140_epjb_e2017-80471-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2017-80471-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:90:y:2017:i:12:d:10.1140_epjb_e2017-80471-2