EconPapers    
Economics at your fingertips  
 

Individual-collective crossover driven by particle size in dense assemblies of superparamagnetic nanoparticles

Karl Ridier, Béatrice Gillon, Grégory Chaboussant (), Laure Catala, Sandra Mazérat, Eric Rivière and Talal Mallah
Additional contact information
Karl Ridier: Laboratoire Léon Brillouin, UMR12 CEA-CNRS
Béatrice Gillon: Laboratoire Léon Brillouin, UMR12 CEA-CNRS
Grégory Chaboussant: Laboratoire Léon Brillouin, UMR12 CEA-CNRS
Laure Catala: Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud 11
Sandra Mazérat: Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud 11
Eric Rivière: Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud 11
Talal Mallah: Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS, Université Paris Sud 11

The European Physical Journal B: Condensed Matter and Complex Systems, 2017, vol. 90, issue 4, 1-9

Abstract: Abstract Prussian blue analogues (PBA) ferromagnetic nanoparticles Cs I x Ni II [Cr III (CN)6 ] z ·3(H2O) embedded in CTA+ (cetyltrimethylammonium) matrix have been investigated by magnetometry and magnetic small-angle neutron scattering (SANS). Choosing particle sizes (diameter D = 4.8 and 8.6 nm) well below the single-domain radius and comparable volume fraction of particle, we show that the expected superparamagnetic regime for weakly anisotropic isolated magnetic particles is drastically affected due to the interplay of surface/volume anisotropies and dipolar interactions. For the smallest particles (D = 4.8 nm), magnetocrystalline anisotropy is enhanced by surface spins and drives the system into a regime of ferromagnetically correlated clusters characterized by a temperature-dependent magnetic correlation length L mag which is experimentally accessible using magnetic SANS. For D = 8.6 nm particles, a superparamagnetic regime is recovered in a wide temperature range. We propose a model of interacting single-domain particles with axial anisotropy that accounts quantitatively for the observed behaviors in both magnetic regimes.

Keywords: Mesoscopic; and; Nanoscale; Systems (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2017-70534-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:90:y:2017:i:4:d:10.1140_epjb_e2017-70534-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2017-70534-9

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:90:y:2017:i:4:d:10.1140_epjb_e2017-70534-9