EconPapers    
Economics at your fingertips  
 

Phase diagram of the frustrated asymmetric ferromagnetic spin ladder

Lihua Pan, Depeng Zhang, Hsiang-Hsuan Hung and Yong-Jun Liu ()
Additional contact information
Lihua Pan: School of Physics Science and Technology, Yangzhou University
Depeng Zhang: School of Physics Science and Technology, Yangzhou University
Hsiang-Hsuan Hung: The University of Texas
Yong-Jun Liu: School of Physics Science and Technology, Yangzhou University

The European Physical Journal B: Condensed Matter and Complex Systems, 2017, vol. 90, issue 6, 1-8

Abstract: Abstract We present a systematic investigation on the ground state of an asymmetric two-leg spin ladder (where exchange couplings of the legs are unequal) with ferromagnetic (FM) nearest-neighbor interaction and diagonal anti-ferromagnetic frustration using the density matrix renormalization group method. When the ladder is strongly asymmetric with moderate frustration, a magnetic canted state is observed between an FM state and a singlet dimerized state. The phase boundaries are dependent on the asymmetric strength. On the other hand, when the asymmetric strength is intermediate, a so-called spin-stripe state (spins align parallel on the same legs, but antiparallel on rungs) is discovered, and the system experiences a first-order phase transition from the FM state to the spin-stripe state upon increasing frustration. Numerical evidence is presented for interpretation of the phase diagram in terms of frustration and the asymmetric strength.

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2017-70716-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:90:y:2017:i:6:d:10.1140_epjb_e2017-70716-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2017-70716-5

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:90:y:2017:i:6:d:10.1140_epjb_e2017-70716-5