Equivalent linearization finds nonzero frequency corrections beyond first order
Rohitashwa Chattopadhyay () and
Sagar Chakraborty
Additional contact information
Rohitashwa Chattopadhyay: Indian Institute of Technology Kanpur
Sagar Chakraborty: Indian Institute of Technology Kanpur
The European Physical Journal B: Condensed Matter and Complex Systems, 2017, vol. 90, issue 6, 1-4
Abstract:
Abstract We show that the equivalent linearization technique, when used properly, enables us to calculate frequency corrections of weakly nonlinear oscillators beyond the first order in nonlinearity. We illustrate the method by applying it to the conservative anharmonic oscillators and the nonconservative van der Pol oscillator that are respectively paradigmatic systems for modeling center-type oscillatory states and limit cycle type oscillatory states. The choice of these systems is also prompted by the fact that first order frequency corrections may vanish for both these types of oscillators, thereby rendering the calculation of the higher order corrections rather important. The method presented herein is very general in nature and, hence, in principle applicable to any arbitrary periodic oscillator.
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2017-80045-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:90:y:2017:i:6:d:10.1140_epjb_e2017-80045-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2017-80045-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().