EconPapers    
Economics at your fingertips  
 

Dissecting energy level renormalization and polarizability enhancement of molecules at surfaces with subsystem TDDFT

Alina Umerbekova, Shou-Feng Zhang, Sudheer Kumar P. and Michele Pavanello ()
Additional contact information
Alina Umerbekova: Rutgers University
Shou-Feng Zhang: Rutgers University
Sudheer Kumar P.: Rutgers University
Michele Pavanello: Rutgers University

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 10, 1-10

Abstract: Abstract Molecules in the vicinity of extended systems, such as metal surfaces, behave in peculiar ways. Their energy levels are broadened, and their molecular properties are so profoundly enhanced that they hardly resemble the ones of the isolated molecule. This is due to dynamical interactions (i.e., interactions that couple excited electronic states) between the molecular, finite system and the extended, infinite system. Since the early days of quantum mechanics, Fermi golden rule has been employed to explain some of the dynamical interactions (such as the broadening of the energy levels). However, a fully quantum-mechanical and ab initio model of these systems remains elusive, in most part due to the computational complexity entailed in the simulations. In this work, we present subsystem time-dependent DFT (TDDFT) simulations of water and benzene molecules as they interact with surfaces of MoS2 monolayer and Au(111). A many-body expansion of the supersystem response function in terms of molecule and surface responses allows us to dissect and describe the dynamical interactions. Not only do we compute and clearly identify terms related to dissipation, broadening, and peak shift, but we also provide a connection between subsystem TDDFT and Fermi golden rule. This work sets the stage for subsystem TDDFT simulations of interfaces relevant to energy materials and nonadiabatic dynamics at such interfaces.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90145-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90145-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90145-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90145-2