EconPapers    
Economics at your fingertips  
 

Electronic stopping and proton dynamics in InP, GaP, and In0.5Ga0.5P from first principles

Cheng-Wei Lee and André Schleife ()
Additional contact information
Cheng-Wei Lee: University of Illinois at Urbana-Champaign
André Schleife: University of Illinois at Urbana-Champaign

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 10, 1-9

Abstract: Abstract The phosphide-based III–V semiconductors InP, GaP, and In0.5Ga0.5P are promising materials for solar panels in outer space and radioisotope batteries, for which lifetime is a major issue. In order to understand high radiation tolerance of these materials and improve it further, it is necessary to describe the early stages of radiation damage on fast time and short length scales. In particular, the influence of atomic ordering, as observed e.g. in In0.5Ga0.5P, on electronic stopping is unknown. We use real-time time-dependent density functional theory and the adiabatic local density approximation to simulate electronic stopping of protons in InP, GaP, and the CuAu-I ordered phase of In0.5Ga0.5P across a large kinetic energy range. These results are compared to SRIM and we investigate the dependence on the channel of the projectile through the target. We show that stopping can be enhanced or reduced in In0.5Ga0.5P and explain this using the electron-density distribution. By comparing Ehrenfest and Born–Oppenheimer molecular dynamics, we illustrate the intricate dynamics of a proton on a channeling trajectory.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90204-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90204-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90204-8

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90204-8