Occupation probabilities as variables in electronic structure theory: cooper pairing, OP-NSOFT-Cs,t, and the homogeneous electron liquid
Ralph Gebauer,
Morrel H. Cohen and
Roberto Car ()
Additional contact information
Ralph Gebauer: The Abdus Salam International Centre for Theoretical Physics
Morrel H. Cohen: Rutgers University
Roberto Car: Princeton University
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 10, 1-12
Abstract:
Abstract The energy functional of a novel electronic structure theory, OP-NSOFT, has as variables the natural spin orbitals (NSO) of the trial function and their joint occupation probabilities in the search for the ground state energy. When occupancy is restricted to the spin-paired NSOs of DOCI, the resulting theory, OP-NSOFT-0, scales as M3, with M the size of the one-electron basis set. Accurate results were obtained for small molecules, particularly near dissociation where single reference theories like DFT are inaccurate. The homogeneous electron liquid (HEL) could serve as a test bed of OP-NSOFT for condensed systems, but OP-NSOFT-0 reduces to the Hartree–Fock approximation for the HEL. Cooper pairing is introduced instead, both singlet pairing, OP-NOFT-Cs, and fully polarized triplet pairing, OP-NSOFT-Ct. The former yields 1/3 of the diffusion-Monte-Carlo correlation energy, the latter 1/2 to 1/3 with decreasing electron density for rs values between 1 and 10. Both yield the discontinuity in the single-particle occupation number required by the Luttinger theorem. Two-state joint occupation probabilities illustrate the importance of electron–electron small-angle scattering in establishing electron correlation in the unpolarized HEL.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90242-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90242-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-90242-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().