EconPapers    
Economics at your fingertips  
 

Nontrivial tensile behavior of rutile TiO2 nanowires: a molecular dynamics study

Matin-Alsadat Mostaan, Jamal Davoodi, Hadi Alizadeh and Mohsen Yarifard ()
Additional contact information
Matin-Alsadat Mostaan: University of Zanjan
Jamal Davoodi: University of Zanjan
Hadi Alizadeh: Parand Branch, Islamic Azad University
Mohsen Yarifard: Qazvin Branch, Islamic Azad University

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 10, 1-6

Abstract: Abstract In this paper, we study the tensile behavior of cylindrical rutile TiO2 nanowires, employing molecular dynamics (MD) simulation technique. The third-generation charge optimized many-body (COMB3) has been used for interatomic potential modeling. The influence of temperature and nanowire diameter on Young’s modulus is investigated. Our simulations exhibit the anisotropic behavior of Young’s modulus as a function of diameter for different crystallographic orientations. Although our results are in good accord with the existing results in [1 0 0] direction, Young’s modulus adds up monotonically with increasing the cross-sectional diameter of nanowire in [0 0 1] direction. It is found that Young’s modulus of the nanowires are lower (higher) than the bulk value for [0 0 1] ([1 0 0]) direction. Furthermore, simulation results also indicate that Young’s modulus of rutile TiO2 nanowire increases as a function of temperature for a given diameter, unexpectedly. The obtained results may be useful in the field of nanotechnology for optimizing mechanical performance to gain specific applications.

Keywords: Computational; Methods (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90330-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90330-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90330-3

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:10:d:10.1140_epjb_e2018-90330-3