EconPapers    
Economics at your fingertips  
 

Hybrid multilane models for highway traffic

Taiyi Zhang and Yu-Cheng Lin ()
Additional contact information
Taiyi Zhang: Graduate Institute of Applied Physics, National Chengchi University
Yu-Cheng Lin: Graduate Institute of Applied Physics, National Chengchi University

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 11, 1-7

Abstract: Abstract We study effects of lane changing rules on multilane highway traffic using the Nagel–Schreckenberg cellular automaton model with different schemes for combining driving lanes (lanes used by default) and overtaking lanes. Three schemes are considered: a symmetric model, in which all lanes are driving lanes; an asymmetric model, in which the right lane is a driving lane and the other lanes are overtaking lanes; a hybrid model, in which the leftmost lane is an overtaking lane and all the other lanes are driving lanes. In a driving lane, vehicles follow symmetric rules for lane changes to the left and to the right, while in an overtaking lane vehicles follow asymmetric lane changing rules. We test these schemes for three- and four-lane traffic mixed with some low-speed vehicles (having a lower maximum speed) in a closed system with periodic boundary conditions as well as in an open system with one open lane. Our results show that the asymmetric model, which reflects the ”Keep Right Unless Overtaking” rule, is more efficient than the other two models. An extensible software package developed for this study is free available.

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90500-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90500-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90500-3

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:11:d:10.1140_epjb_e2018-90500-3