EconPapers    
Economics at your fingertips  
 

High energy shift in the optical conductivity spectrum of the bilayer graphene

Vardan Apinyan () and Tadeusz K. Kopeć
Additional contact information
Vardan Apinyan: Institute of Low Temperature and Structure Research, Polish Academy of Sciences
Tadeusz K. Kopeć: Institute of Low Temperature and Structure Research, Polish Academy of Sciences

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 12, 1-13

Abstract: Abstract We calculate theoretically the optical conductivity in the bilayer graphene by considering Kubo-Green-Matsubara formalism. Different regimes of the interlayer coupling parameter have been considered in the paper. We show that the excitonic effects substantially affect the optical conductivity spectrum at the high-frequency regime when considering the full interaction bandwidth, leading to a total suppression of the usual Drude intraband optical transition channels and by creating a new type of optical gap. We discuss the role of the interlayer coupling parameter and the Fermi level on the conductivity spectrum, going far beyond the usual tight-binding approximation scheme for the extrinsic bilayer graphene. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90407-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:12:d:10.1140_epjb_e2018-90407-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90407-y

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:12:d:10.1140_epjb_e2018-90407-y