EconPapers    
Economics at your fingertips  
 

A recursive method for calculating the total number of spanning trees and its applications in self-similar small-world scale-free network models

Fei Ma (), Jing Su and Bing Yao
Additional contact information
Fei Ma: School of Electronics Engineering and Computer Science, Peking University
Jing Su: College of Mathematics and Statistics, Northwest Normal University
Bing Yao: College of Mathematics and Statistics, Northwest Normal University

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 5, 1-14

Abstract: Abstract The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) ~ k−γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-80560-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-80560-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-80560-8

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-80560-8