Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice
Pavol Farkašovský ()
Additional contact information
Pavol Farkašovský: Institute of Experimental Physics, Slovak Academy of Sciences
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 5, 1-6
Abstract:
Abstract The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations (n ≳ 7∕4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-80650-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-80650-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-80650-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().