Characterization of Lifshitz transitions in topological nodal line semimetals
Hui Jiang,
Linhu Li (),
Jiangbin Gong and
Shu Chen ()
Additional contact information
Hui Jiang: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
Linhu Li: National University of Singapore
Jiangbin Gong: National University of Singapore
Shu Chen: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 5, 1-7
Abstract:
Abstract We introduce a two-band model of three-dimensional nodal line semimetals (NLSMs), the Fermi surface of which at half-filling may form various one-dimensional configurations of different topology. We study the symmetries and “drumhead” surface states of the model, and find that the transitions between different configurations, namely, the Lifshitz transitions, can be identified solely by the number of gap-closing points on some high-symmetry planes in the Brillouin zone. A global phase diagram of this model is also obtained accordingly. We then investigate the effect of some extra terms analogous to a two-dimensional Rashba-type spin–orbit coupling. The introduced extra terms open a gap for the NLSMs and can be useful in engineering different topological insulating phases. We demonstrate that the behavior of surface Dirac cones in the resulting insulating system has a clear correspondence with the different configurations of the original nodal lines in the absence of the gap terms.
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-80717-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-80717-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-80717-5
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().