Simple analytical model of a thermal diode
Saurabh Kaushik,
Sachin Kaushik and
Rahul Marathe ()
Additional contact information
Saurabh Kaushik: Indian Institute of Technology, Delhi
Sachin Kaushik: Indian Institute of Technology, Delhi
Rahul Marathe: Indian Institute of Technology, Delhi
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 5, 1-5
Abstract:
Abstract Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90038-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:5:d:10.1140_epjb_e2018-90038-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-90038-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().