EconPapers    
Economics at your fingertips  
 

Polarization in Kohn-Sham density-functional theory

Raffaele Resta ()
Additional contact information
Raffaele Resta: CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 6, 1-9

Abstract: Abstract The modern theory of polarization, based on a Berry phase, is currently implemented in most first-principle electronic structure codes. Many KS-DFT calculations have addressed various phenomena (ferroelectricity, piezoelectricity, lattice dynamics, infrared spectra of liquid and amorphous systems) in several materials. Notwithstanding, the KS polarization does not coincide with the exact one, even when ideally implemented with the exact KS crystalline potential. This is at odds with the fact that the KS electrical dipole of a bounded crystallite coincides by definition with the exact one: we analyze this issue from several viewpoints. According to the modern theory, the polarization of a centrosymmetric crystal does not vanish in general; we show that the polarization of a centrosymmetric quasi-1d systems (stereoregular linear polimer) is a topological invariant: ergo in this case the KS polarization coincides with the exact one.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90089-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:6:d:10.1140_epjb_e2018-90089-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90089-5

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:6:d:10.1140_epjb_e2018-90089-5