A train of bright and dark-rogue wave solitons in a polariton fluid with inhomogeneous strength interaction
Guy Richard Kol ()
Additional contact information
Guy Richard Kol: Faculty of Mines and Petroleum Industries, Department of Mechanical Petroleum and Gas Engineering, University of Maroua
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 7, 1-4
Abstract:
Abstract We solve using the similarity transformation method a one-dimensionless driven-dissipative nonlinear Schrödinger equation to explore the dynamics of the rogue wave solitons generated in a polariton fluid. Under resonant excitation, we predict the existence of the bright and the dark-rogue waves solitons by varying the external pump source parameter. By considering, a time periodic polariton–polariton interaction and adjusting its frequency, the rogue wave soliton trains occur in a polariton fluid. In addition we observe that, the amplitude of the pump power is responsible to the formation of a the train of the bright and the dark rogue waves solitons.
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90023-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90023-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-90023-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().