Pentameric PdAu and PdPt nanoparticles on the MgO(1 0 0) surface and their CO and O2 adsorption properties
Mikail Aslan and
Roy L. Johnston ()
Additional contact information
Mikail Aslan: Gaziantep University
Roy L. Johnston: School of Chemistry, University of Birmingham
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 7, 1-12
Abstract:
Abstract The surface mode of the Birmingham Cluster Genetic Algorithm (S-BCGA), which performs an unbiased global optimisation search for clusters adsorbed on a surface, has been employed for the global optimisation of noble metal pentamers on an MgO(1 0 0) substrate. The effect of element identity and alloying in surface-bound neutral subnanometre particles is calculated by energetic analysis of all compositions of supported 5-atom PdAu and PdPt clusters. Our results show that the binding strengths of the component elements to the surface are in the order Pt > Pd > Au. In addition, alloying Pd with Au and Pt is favorable for this size since excess energy calculations show a preference for bimetallic clusters for both cases. Furthermore, the electronic behaviour, which is intermediate between molecular systems and bulk metals allows tuning of the characteristics of particles in the subnanometre size range. The adsorption of CO and O2 probe molecules are also modelled and it is found that CO and O2 adsorption leads to a weakening of the cluster–surface interaction.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90060-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90060-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-90060-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().