EconPapers    
Economics at your fingertips  
 

Second generation Car-Parrinello MD: application to the h-BN/Rh(111) nanomesh

Tiziana Musso (), Sebastiano Caravati, Jürg Hutter and Marcella Iannuzzi
Additional contact information
Tiziana Musso: University of Zürich
Sebastiano Caravati: University of Zürich
Jürg Hutter: University of Zürich
Marcella Iannuzzi: University of Zürich

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 7, 1-8

Abstract: Abstract Hexagonal boron nitride sp2 layers grown and supported on the Rh(111) metal surface attracted quite some interest thanks to the structural and electronic peculiarities of this quasi-2D system. The honeycomb regular corrugation is the key feature at the origin of several properties and applications in nanotechnology, e.g., the selective adsorption and functionalisation related to the modulation of the electronic structure. Atomistic simulations play an important role, since they can shed light on the nature of such a complex interface, providing resolution of details that cannot be achieved experimentally. However, the studies by electronic structure calculations have been mostly limited to static models of the optimized system. The sampling of configurations at finite temperature by ab-initio molecular dynamics requires significantly larger computational effort, and can become unfeasible for large scale and metallic models, as it is the case of h-BN/Rh(111). In this work, we employ a recently developed Car-Parrinello-like approach to overcome the performance limitations of the standard Born-Oppenheimer molecular dynamics scheme, thus obtaining a speed-up of 17×. We report on the set-up and the application of this approach to simulate the h-BN/Rh(111) interface at different temperatures and discuss the thermal stability of the corrugated pattern.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90104-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90104-y

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90104-y

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90104-y