EconPapers    
Economics at your fingertips  
 

Local vertex corrections from exchange-correlation kernels with a discontinuity

Maria Hellgren ()
Additional contact information
Maria Hellgren: Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 7, 1-8

Abstract: Abstract The fundamental gap of an interacting many-electron system is given by the sum of the single-particle Kohn-Sham gap and the derivative discontinuity. The latter can be generated by advanced approximations to the exchange-correlation (XC) energy and is the key quantity to capture strong correlation with density functional theory (DFT). In this work we derive an expression for the derivative discontinuity in terms of the XC kernel of time-dependent density functional theory and demonstrate the crucial role of a discontinuity in the XC kernel itself. By relating approximate XC kernels to approximate local vertex corrections we then generate beyond-GW self-energies that include a discontinuity in the local vertex function. The quantitative importance of this result is illustrated with a numerical study of the local exchange vertex on model systems.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90110-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90110-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90110-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90110-1