How sharply does the Anderson model depict a single-electron transistor?
Krissia Zawadzki and
Luiz N. Oliveira ()
Additional contact information
Krissia Zawadzki: Instituto de Física de São Carlos, University of São Paulo
Luiz N. Oliveira: Instituto de Física de São Carlos, University of São Paulo
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 7, 1-10
Abstract:
Abstract The single-impurity Anderson model has been the focus of theoretical studies of molecular junctions and the single-electron transistor, a nanostructured device comprising a quantum dot that bridges two otherwise decoupled metallic leads. The low-temperature transport properties of the model are controlled by the ground-state occupation of the quantum dot, a circumstance that recent density-functional approaches have explored. Here we show that the ground-state dot occupation also parametrizes a linear mapping between the thermal dependence of the zero-bias conductance and a universal function of the temperature scaled by the Kondo temperature. Careful measurements by Grobis and co-workers are very accurately fitted by the universal mapping. Nonetheless, the dot occupation and an asymmetry parameter extracted from the same mapping are relatively distant from the expected values. We conclude that mathematical results derived from the model Hamiltonian reproduce accurately the universal physical properties of the device. In contrast, non-universal features cannot be reproduced quantitatively. To circumvent this limitation, ab initio studies of the device at high energies seem necessary, to accurately define the model Hamiltonian. Our conclusion reinforces findings by Gross and coworkers, who applied time-dependent density-functional theory to show that, to describe the low-energy properties of molecular junctions, one must be able to describe the high-energy regime.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90164-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:7:d:10.1140_epjb_e2018-90164-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-90164-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().