EconPapers    
Economics at your fingertips  
 

Mott localization nurtures several competing and coexisting orders

Ganapathy Baskaran ()
Additional contact information
Ganapathy Baskaran: The Institute of Mathematical Sciences, C I T Campus

The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 9, 1-7

Abstract: Abstract Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90355-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:9:d:10.1140_epjb_e2018-90355-6

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90355-6

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:91:y:2018:i:9:d:10.1140_epjb_e2018-90355-6