Emergence of novel phenomena on the border of low dimensional spin and charge order
Charles R. S. Haines and
Siddharth S. Saxena ()
Additional contact information
Charles R. S. Haines: Cavendish Laboratory, Cambridge University
Siddharth S. Saxena: Cavendish Laboratory, Cambridge University
The European Physical Journal B: Condensed Matter and Complex Systems, 2018, vol. 91, issue 9, 1-7
Abstract:
Abstract Proximity to magnetic order as well as low dimensionality are both beneficial to superconductivity at elevated temperatures. Materials on the border of magnetism display a wide range of novel and potentially useful phenomena: high Tcs, heavy fermions, coexistence of magnetism and superconductivity and giant magnetoresistance. Low dimensionality is linked to enhanced fluctuations and, in the case of heavy fermions, has been experimentally shown to be beneficial for the fluctuations that are responsible for the rich abundance of novel emergent phases. This experimental strategy motivated us to explore 2D insulating magnets with a view to investigate phase evolution across metal-insulator and magnetic-non-magnetic boundaries. This has been a fruitful venture with totally novel results different to our expectations. We present results from 2 distinct systems. The MPS3 family are highly anisotropic in both their crystal and magnetic structures. FePS3 in particular is a model insulating honeycomb antiferromagnet. We find that the application of pressure to FePS3 induces an insulator to metal transition. The second system, Cs2CuCl4, is a highly-frustrated quantum spin liquid at low temperature. The competition of the 3 relevant exchange couplings is delicately balanced. It has been shown to become antiferromagnetic at very low temperatures (~1 K). We have found that the application of pressure for 3 days or more followed by a return to ambient pressure stabilises a totally distinct magnetic ground state.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90358-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:91:y:2018:i:9:d:10.1140_epjb_e2018-90358-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2018-90358-3
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().