Electronegativity, symmetry, and bond strength intrinsically control charge transport through five-membered single-molecule junction
Zainelabideen Y. Mijbil ()
Additional contact information
Zainelabideen Y. Mijbil: Chemistry and Physiology Department, Veterinary Medicine College, Al-Qasim Green University
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 10, 1-5
Abstract:
Abstract Density functional theory and Green’s function incorporated tight binding approach have been implemented to investigate the role of electronegativity, symmetry, and bond strength in charge transport of five-membered aromatic molecules, namely cyclopentadiene, thiophene, furan, pyrrole, and 5,5-dimethylcyclopenta-1,3-diene. A novel dependence of charge transport and band gap on the bond strength of the intact segment of molecule was revealed. It is found that decreasing the strength (increasing the length) of the bonds of the sound branch would enhance the electronic transmission and narrow the band gap. In addition, the electronic transmission of the symmetric systems is higher than the asymmetric counterparts and it increases (decreases) with onsite energy of the hetero-site of the symmetric (asymmetric) system. Graphical abstract
Keywords: Mesoscopic; and; Nanoscale; Systems (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100361-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:10:d:10.1140_epjb_e2019-100361-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-100361-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().