EconPapers    
Economics at your fingertips  
 

Fluctuation relations for flow-driven trapped colloids and implications for related polymeric systems

Aishani Ghosal and Binny J. Cherayil ()
Additional contact information
Aishani Ghosal: Indian Institute of Science
Binny J. Cherayil: Indian Institute of Science

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 11, 1-9

Abstract: Abstract This paper is a theoretical study of the stochastic thermodynamics of a single, optically trapped particle that is initially in equilibrium at temperature T and is then subjected to a steady 2D extensional flow. Specifically, it is an attempt to show how fluctuation theorems arise in systems governed by thermal noise and the opposing effects of harmonic confinement and hydrodynamic driving. Among the paper’s findings are the following: (i) that at long times, following the imposition of the flow, the system settles into an equilibrium stationary state that obeys detailed balance and that is characterized by an effective Boltzmann potential, such that the free energy change ΔF between the initial and final states is determined by the ratio of the corresponding partition functions, (ii) that the work done in the process w and the accompanying change in total entropy of system and surroundings, ΔStot, both satisfy fluctuation theorems, the first the Jarzynski equality ⟨e−w/kBT⟩ = e−ΔF/kBT, and the second the integral fluctuation theorem, ⟨e−ΔStot/kB⟩ = 1, and (iii) that under a frame-invariant version of thermodynamics used to describe flow-driven particle motion, the work done W satisfies the Bochkov-Kuzovlev relation, ⟨e−W/kBT⟩ = 1, while the associated total entropy change continues to satisfy the integral fluctuation theorem. These results have an immediate bearing on prior results from this lab on the dynamics of flow-driven polymers; in particular, they highlight the need to revise a number of our earlier conclusions. Graphical abstract

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100376-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:11:d:10.1140_epjb_e2019-100376-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-100376-0

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:11:d:10.1140_epjb_e2019-100376-0