Singular low-energy states of tilted Dirac semimetals induced by the fermion-fermion interactions
Jie-Qiong Li,
Dong-Xing Zheng and
Jing Wang ()
Additional contact information
Jie-Qiong Li: Tianjin University
Dong-Xing Zheng: Tianjin University
Jing Wang: Tianjin University
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 12, 1-16
Abstract:
Abstract We attentively investigate the effects of short-range fermion-fermion interactions on the low-energy properties of both two-dimensional type-I and type-II tilted Dirac semimetals by means of the renormalization group framework. Practicing the standard renormalization group procedures via taking into account all one-loop corrections gives rise to the coupled energy-dependent evolutions of all interaction parameters, which are adopted to carefully examine whether and how the fermion-fermion interactions influence the low-energy physical behaviors of tilted Dirac fermions. After carrying out the detailed analysis of coupled flows, we figure out the tilting parameter dictates the low-energy states of tilted Dirac fermions in conjunction with starting values of fermion-fermion couplings. With proper variations of these two kinds of parameters, the tilted Dirac fermions can either flow towards the Gaussian fixed point or undergo certain instability that is conventionally accompanied by a phase transition in the low-energy regime. In addition, all potential instabilities can be clustered into five distinct classes owing to the competitions between the tilting parameter and initial fermionic interactions. Moreover, the dominant phases accompanied by the instabilities are determined via computing and comparing the susceptibilities of eight potential phases. Graphical abstract
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100373-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:12:d:10.1140_epjb_e2019-100373-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-100373-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().