EconPapers    
Economics at your fingertips  
 

Multifractality and the distribution of the Kondo temperature at the Anderson transition

Keith Slevin (), Stefan Kettemann and Tomi Ohtsuki
Additional contact information
Keith Slevin: Graduate School of Science, Osaka University
Stefan Kettemann: School of Engineering and Science, Jacobs University Bremen
Tomi Ohtsuki: Physics Division, Sophia University

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 12, 1-8

Abstract: Abstract Using numerical simulations, we investigate the distribution of Kondo temperatures at the Anderson transition. In agreement with previous work, we find that the distribution has a long tail at small Kondo temperatures. Recently, an approximation for the tail of the distribution was derived analytically. This approximation takes into account the multifractal distribution of the wavefunction amplitudes (in the parabolic approximation), and power law correlations between wave function intensities, at the Anderson transition. It was predicted that the distribution of Kondo temperatures has a power law tail with a universal exponent. Here, we attempt to check that this prediction holds in a numerical simulation of Anderson’s model of localisation in three dimensions. Graphical abstract

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100478-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:12:d:10.1140_epjb_e2019-100478-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-100478-1

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:12:d:10.1140_epjb_e2019-100478-1