EconPapers    
Economics at your fingertips  
 

Electrical and thermal conductivities of few-layer armchair graphene nanoribbons

Hamze Mousavi () and Samira Jalilvand
Additional contact information
Hamze Mousavi: Razi University
Samira Jalilvand: Razi University

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 1, 1-11

Abstract: Abstract The tight-binding Hamiltonian model and the Green’s function formalism have been employed to calculate the temperature dependent electrical and electronic thermal conductivities of metal and few-layer armchair graphene nanoribbon semiconductors and the results were compared with the mono-layer system. It was observed that due to the overlapping of the nonhybridized pz orbital perpendicular to the sheets, increasing the layers of the systems causes the conductivities of the layers to decrease. Also, these quantities are calculated for three different values of interlayer hopping of the nonhybridized pz orbitals. The results show that in low temperatures, the electrical and thermal conductivities of the system increase when the interlayer hopping term is increased. However, by increasing the temperature, the curves representing electrical conductivities converge to the same value while thermal conductivity decreases. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2018-90581-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:1:d:10.1140_epjb_e2018-90581-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2018-90581-x

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:1:d:10.1140_epjb_e2018-90581-x