Two stage approach to functional network reconstruction for binary time-series
Navit Dori (),
Pablo Piedrahita and
Yoram Louzoun
Additional contact information
Navit Dori: Gonda Brain Research Center, Bar-Ilan University
Pablo Piedrahita: Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza
Yoram Louzoun: Gonda Brain Research Center, Bar-Ilan University
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 2, 1-16
Abstract:
Abstract The deduction of network connectivity from the observed node dynamics is costly in large networks. The theoretical number of possible networks containing N nodes connected by binary links grows exponentially with N square. This problem is often termed “the curse of dimensionality”. In practice, unfeasible long time-series and a high computational cost are required to detect the connectivity of a network from its observations. Given the large number of time-series currently assembled in all domains of science, a solution to this inverse problem in large networks is required. We here propose a solution to the inverse problem in large networks of binary variables through a redefinition of the problem. Instead of attempting to deduce the links of a network, we redefine the problem into the prediction of future dynamics. Specifically, we show that links between nodes can be divided into links affecting the future dynamics and links that do not. We further show that hard-to-predict links belong to the second group, and as such can be ignored when predicting future dynamics. This division is applied through a two stage algorithm. In the first stage, the vast majority of potential links (pairs of nodes) is removed, since even if they exist they do not affect the dynamics. At the second stage, a rapid high-precision estimate of the predictable links is performed using a modified partial correlation algorithm. A good predictor for the classification of potential links is the mutual information between a node-pair. Similarly, some nodes have practically no variability and as such have practically no effect on the dynamics of other nodes. The links to and from such nodes are hard to predict. We show that a two stage algorithm can be applied to these nodes with similar results. This methodology does not reproduce the network that originally induced the dynamics, but its prediction of future dynamics is similar to the one of the real network. The current analysis is limited to reconstruction using partial correlation methods. However, the same principle can be applied to other reconstruction methods. Graphical abstract
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-80605-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:2:d:10.1140_epjb_e2019-80605-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-80605-6
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().