Coupled elastic membranes model for quantum heat transport in semiconductor nanowires
Julian A. Lawn () and
Daniel S. Kosov
Additional contact information
Julian A. Lawn: College of Science and Engineering, James Cook University
Daniel S. Kosov: College of Science and Engineering, James Cook University
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 2, 1-12
Abstract:
Abstract Presented here is a nanowire model, consisting of coupled elastic membranes with the purpose of investigating thermal transport in quasi-one-dimensional quantum systems. The vibrations of each elastic membrane are quantized and the flow of the vibrational energy between adjacent membranes is allowed. The ends of the nanowire are attached to thermal baths held at different temperatures. We derived quantum master equation for energy flow across the nanowire and obtained thermal currents and other key observables. We study the effects of a disordered boundary on the thermal current by randomizing the membrane radii. We evaluate the model as a nanowire analogue as well as study the effects of a disordered boundary on thermal conductivity. The calculations show that the membrane lattice model demonstrates diameter phonon confinement and a severe reduction in thermal conductivity due to surface roughness which is characteristic of semiconductor nanowires. The surface roughness also produces a length dependence of the thermal conductivity of the form κ = αLβ, with β dependent on disorder characteristics, in the otherwise ballistic regime. Finally, the parameters of the model are fitted to available experimental data for silicon nanowires and the results of the calculations are assessed against the experimental data. Graphical abstract
Keywords: Mesoscopic; and; Nanoscale; Systems (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-90629-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:2:d:10.1140_epjb_e2019-90629-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-90629-5
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().