Spin transport and spin pump in graphene-like materials: effects of tilted Dirac cone
Debabrata Sinha ()
Additional contact information
Debabrata Sinha: Theoretical Physics Department, Indian Association for the Cultivation of Science
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 3, 1-8
Abstract:
Abstract We study spin transport phenomena in two-dimensional graphene-like materials in the presence of arbitrarily tilted Dirac cones. We use the generalized scattering approach to calculate the spin current in normal-ferromagnetic-normal (N-F-N) junction of the materials. The tilting of the Dirac cone strongly influence the transport properties and hence the spin conductance. We find a reversal of spin current polarization with smooth variation of the tilt parameter. We also study the spin current by the adiabatic precession of a doped ferromagnet on top of the material. It is shown that spin-mixing conductance and hence spin current become zero for a finite value of tilt. These findings provide an efficient way towards high controllability of spin transport of the ferromagnetic junction and can be very useful in the field of spintronics. Depending on the character of spin transport properties, it is also possible to measure the tilt of the Dirac cone. Graphical abstract
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-90332-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:3:d:10.1140_epjb_e2019-90332-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-90332-7
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().