EconPapers    
Economics at your fingertips  
 

Active control of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon

Yi-Fan Liao () and Guo-You Wang
Additional contact information
Yi-Fan Liao: School of Automation, Huazhong University of Science and Technology
Guo-You Wang: School of Automation, Huazhong University of Science and Technology

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 3, 1-6

Abstract: Abstract It is known that the surface plasmons (SPs) supported by graphene can be strongly coupled with electric SPs supported by the metamaterial and with symmetric and antisymmetric surface phonon polaritons (SPhPs) supported by silicon carbide (SiC). It has been shown that coated SiC thin films can efficiently enhance near-field radiative heat transfer between metamaterials. In this study, we theoretically investigate near-field heat transfer between graphene–SiC–graphene–metamaterial (GSGM) multilayer structures. The heat transfer between GSGM structures is significantly larger than that between SiC-coated metamaterials when the chemical potential of graphene is not very high. Moreover, the structure proposed in this study behaves much better than the previous SiC/graphene/metamaterial in enhancing the near-field radiative heat transfer. The findings in this study provide a basis for active controlling of near-field radiative heat transfer. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-90627-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:3:d:10.1140_epjb_e2019-90627-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-90627-7

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:3:d:10.1140_epjb_e2019-90627-7