Large-deviation properties of the largest biconnected component for random graphs
Hendrik Schawe () and
Alexander K. Hartmann
Additional contact information
Hendrik Schawe: Institut für Physik, Universität Oldenburg
Alexander K. Hartmann: Institut für Physik, Universität Oldenburg
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 4, 1-9
Abstract:
Abstract We study the size of the largest biconnected components in sparse Erdős–Rényi graphs with finite connectivity and Barabási–Albert graphs with non-integer mean degree. Using a statistical-mechanics inspired Monte Carlo approach we obtain numerically the distributions for different sets of parameters over almost their whole support, especially down to the rare-event tails with probabilities far less than 10−100. This enables us to observe a qualitative difference in the behavior of the size of the largest biconnected component and the largest 2-core in the region of very small components, which is unreachable using simple sampling methods. Also, we observe a convergence to a rate function even for small sizes, which is a hint that the large deviation principle holds for these distributions. Graphical abstract
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-90667-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:4:d:10.1140_epjb_e2019-90667-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-90667-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().