EconPapers    
Economics at your fingertips  
 

Inducing amplitude death via pinning control

Nannan Zhao, Zhongkui Sun () and Wei Xu
Additional contact information
Nannan Zhao: Northwestern Polytechnical University
Zhongkui Sun: Northwestern Polytechnical University
Wei Xu: Northwestern Polytechnical University

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 8, 1-9

Abstract: Abstract The amplitude death (AD) phenomenon is an important dynamical behavior. Seeking the generation condition that induces AD has been an active and popular research field over the last two decades. In this paper, we report the emergence of AD in the identical coupled system with different network topologies through the pinning control. Using the negative self-feedback as the controllers to pin the network nodes, the critical condition that AD appears can be obtained theoretically. Moreover, the numerical scenarios, such as a single oscillator, two coupled oscillators, and coupled oscillators in regular and complex networks, have also been carried out to validate the effectiveness of the strategy, which coincides with the theoretical predictions. We show that, although the high degree nodes should be pinned preferentially to reach better efficiency for complex networks, the location (or significance) of nodes in network is more noteworthy than the degree of nodes for some regular networks. Our findings therefore provide a possibility to induce AD in coupled systems with different network topologies whose internal parameters and coupling schemes cannot be modified. Graphical abstract

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100108-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100108-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-100108-0

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100108-0