EconPapers    
Economics at your fingertips  
 

Interface driven electrical and magneto-transport properties of (100 – x)% La0.7Sr0.3MnO3– x% Paraffin wax (0 ≤ x ≤ 1) hybrid nanocomposites

Debajit Deb, Sanjay K. Mandal, Archana Lakhani, Aparna Nath and Puja Dey ()
Additional contact information
Debajit Deb: Techno College of Engineering Agartala
Sanjay K. Mandal: National Institute of Technology
Archana Lakhani: UGC-DAE Consortium for Scientific Research (CSR), University Campus
Aparna Nath: National Institute of Technology
Puja Dey: Kazi Nazrul University

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 8, 1-9

Abstract: Abstract We report electrical and magneto-transport properties of La0.7Sr0.3MnO3(LSMO)/Paraffin wax nanocomposites prepared through low temperature chemical pyrophoric reaction process. A core shell structure is expected to be formed having a ferromagnetic LSMO core and a spin disordered shell of paraffin wax. Enhanced charging energy due to coulomb blockade contribution with increasing paraffin wax is observed for the composites attributing enhanced intergranular distance between LSMO grains. Effective spin-polarized tunneling of conduction electrons resulting in sharp low field magnetoresistance (MR) of the composites is due to reordering of spin disorder at paraffin wax shell with magnetic field. Moreover, observation of enhanced magnetoresistive hysteresis with decrease in temperature has been attributed to increased blocked states at LSMO grain surface. Calculated surface spin susceptibility (χb) has been found to follow similar behavior of MR with temperature indicating surface magnetization dependent MR. Fitting of magnetoconductance versus field curves reveal increase of Para to ferro transition temperature, TC and χb indicate higher antiferromagnetic coupling of shell spins for composite samples than pristine LSMO above 50 K. χb also indicate systematic decrease in surface spin disorder of the composite samples with respect to pure LSMO which is expected to be due to the probable covalent bond formation between Paraffin wax molecules and surface atoms of LSMO nanoparticles. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100169-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100169-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-100169-5

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100169-5