Electric field response in breathing pyrochlores
Ipsita Mandal ()
Additional contact information
Ipsita Mandal: Laboratory of Atomic and Solid State Physics, Cornell University
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 8, 1-15
Abstract:
Abstract We study the effects of a uniform electric field on the ground state and excitations of the three-dimensional U(1) spin liquid phase of a breathing pyrochlore lattice, arising due to the coupling between the conventional (Maxwell) electric field and the emergent electrodynamics of the quantum spin ice material. This is an extension of the studies for isotropic pyrochlores in [Phys. Rev. B 96, 125145 (2017)] to the anisotropic case, as the lattice inversion symmetry is broken in breathing pyrochlores. The emergent photons are found to exhibit birefringence, analogous to the isotropic case. However, the system possesses a nonzero polarization even in the absence of an external electric field, unlike the isotropic pyrochlore. We also find that a sufficiently strong electric field triggers a quantum phase transition into new U(1) quantum spin liquid phases which trap π-fluxes of the emergent electric field. Such transitions are seen to occur even when the applied electric field is along a direction that does not show a phase transition in the isotropic limit. Graphical abstract
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100215-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:8:d:10.1140_epjb_e2019-100215-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-100215-4
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().