Asymmetric energy transfers in driven nonequilibrium systems and arrow of time
Mahendra K. Verma ()
Additional contact information
Mahendra K. Verma: Indian Institute of Technology
The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 9, 1-7
Abstract:
Abstract Fundamental interactions are either fully or nearly symmetric under time reversal. But macroscopic phenomena may have a definite arrow of time. From the perspectives of statistical physics, the direction of time is towards increasing entropy. In this paper, we provide another perspective on the arrow of time. In driven-dissipative nonequilibrium systems forced at large scale, the energy typically flows from large scales to dissipative scales. This generic and multiscale process breaks time reversal symmetry and principle of detailed balance, thus can yield an arrow of time. In this paper we propose that conversion of large-scale coherence to small-scales decoherence could be treated as a dissipation mechanism for generic physical systems. We illustrate the above processes using turbulence as an example. In the paper we also describe exceptions to the above scenario, mainly systems exhibiting no energy cascade or inverse energy cascade. Graphical abstract
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-100171-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-100171-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2019-100171-5
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().