EconPapers    
Economics at your fingertips  
 

Fractional hyperviscosity induced growth of bottlenecks in energy spectrum of Burgers equation solutions

Debarghya Banerjee ()
Additional contact information
Debarghya Banerjee: Max Planck Institute for Dynamics and Self-Organization

The European Physical Journal B: Condensed Matter and Complex Systems, 2019, vol. 92, issue 9, 1-5

Abstract: Abstract Energy spectrum of turbulent fluids exhibit a bump at an intermediate wavenumber, between the inertial and the dissipation range. This bump is called bottleneck. Such bottlenecks are also seen in the energy spectrum of the solutions of hyperviscous Burgers equation. Previous work have shown that this bump corresponds to oscillations in real space velocity field. In this paper, we present numerical and analytical results of how the bottleneck and its real space signature, the oscillations, grow as we tune the order of hyperviscosity. We look at a parameter regime α ∈ [1, 2] where α = 1 corresponds to normal viscosity and α = 2 corresponds to hyperviscosity of order 2. We show that even for the slightest fractional increment in the order of hyperviscosity (α) bottlenecks show up in the energy spectrum. Graphical abstract

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2019-90751-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-90751-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2019-90751-4

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:92:y:2019:i:9:d:10.1140_epjb_e2019-90751-4