Why boundary conditions do not generally determine the universality class for boundary critical behavior
Hans Werner Diehl ()
Additional contact information
Hans Werner Diehl: Fakultät für Physik, Universität Duisburg-Essen
The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 10, 1-6
Abstract:
Abstract Interacting field theories for systems with a free surface frequently exhibit distinct universality classes of boundary critical behaviors depending on gross surface properties. The boundary condition satisfied by the continuum field theory on some scale may or may not be decisive for the universality class that applies. In many recent papers on boundary field theories, it is taken for granted that Dirichlet or Neumann boundary conditions decide whether the ordinary or special boundary universality class is observed. While true in a certain sense for the Dirichlet boundary condition, this is not the case for the Neumann boundary condition. Building on results that have been worked out in the 1980s, but have not always been appropriately appreciated in the literature, the subtle role of boundary conditions and their scale dependence is elucidated and the question of whether or not they determine the observed boundary universality class is discussed. Graphical abstract
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-10422-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:10:d:10.1140_epjb_e2020-10422-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2020-10422-9
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().