EconPapers    
Economics at your fingertips  
 

Brownian thermal control device

Hong Zhao and Linru Nie ()
Additional contact information
Hong Zhao: Faculty of Science, Kunming University of Science and Technology
Linru Nie: Faculty of Science, Kunming University of Science and Technology

The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 11, 1-6

Abstract: Abstract Here, we design a Brownian thermal control device with microscale, which consists of two compartments modeled by two spatially periodic potentials, respectively. Through calculating its thermal current, it is found that the device can play roles of both thermal diode and thermal on–off, depending on its symmetry and amplitudes and spatial frequencies of the periodic potentials. In the case of optimal amplitudes and spatial frequencies, a negative differential thermal resistance effect also appears in the system, by means of which a Brownian thermal transistor can be developed. These findings have an important significance for understanding operating mechanisms through which some nano-scale machines and organisms usually work under environments of constant temperatures. Graphical abstract

Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-10341-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:11:d:10.1140_epjb_e2020-10341-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2020-10341-9

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:93:y:2020:i:11:d:10.1140_epjb_e2020-10341-9