A classical fluctuation theory of the superfluid, Mott, and normal phases of correlated bosons
Abhishek Joshi () and
Pinaki Majumdar
Additional contact information
Abhishek Joshi: Harish-Chandra Research Institute, HBNI
Pinaki Majumdar: Harish-Chandra Research Institute, HBNI
The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 2, 1-15
Abstract:
Abstract We present a method that generalises the standard mean field theory of correlated lattice bosons to include amplitude and phase fluctuations of the U(1) field that induces onsite particle number mixing. We solve the resulting problem, initially, by using a classical approximation for the particle number mixing field and a Monte Carlo treatment of the resulting bosonic model. In two dimensions we obtain Tc scales that dramatically improve on mean field theory and are within about 20% of quantum Monte Carlo estimates at density n = 1. The ground state, however, is still mean field, with an overestimate of the critical interaction, Uc, for the superfluid to Mott transition. Further including gaussian quantum fluctuations strikingly improves the Uc and the overall thermal phase diagram. The approach has a computational cost that is linear in system size, readily generalises to multispecies bosons, disorder, and the presence of traps, and yields real frequency response functions. Graphical abstract
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-100330-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:2:d:10.1140_epjb_e2020-100330-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2020-100330-5
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().