Polyvinylidene difluoride-based composite: glassy dynamics and pretransitional behaviour
Szymon Starzonek (),
Kena Zhang,
Aleksandra Drozd-Rzoska,
Sylwester J. Rzoska,
Emilia Pawlikowska,
Mikolaj Szafran and
Feng Gao
Additional contact information
Szymon Starzonek: Institute of High Pressure Physics of the Polish Academy of Sciences
Kena Zhang: State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, NPU-QMUL Joint Research Institute of Advanced Materials and Structure, School of Material Science and Engineering, Northwestern Polytechnical University
Aleksandra Drozd-Rzoska: Institute of High Pressure Physics of the Polish Academy of Sciences
Sylwester J. Rzoska: Institute of High Pressure Physics of the Polish Academy of Sciences
Emilia Pawlikowska: Institute of High Pressure Physics of the Polish Academy of Sciences
Mikolaj Szafran: Warsaw University of Technology
Feng Gao: State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, NPU-QMUL Joint Research Institute of Advanced Materials and Structure, School of Material Science and Engineering, Northwestern Polytechnical University
The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 3, 1-10
Abstract:
Abstract This paper presents results of broadband dielectric spectroscopy studies in the composite system for which particularly strong interactions between polyvinylidene difluoride (PVDF: ferroelectric polymer, TC = 453−473 K) matrix and barium strontium titanate (BST) ferroelectric micro-particles can be expected. For PVDF the super-Arrhenius (SA) dynamics, associated with segmental motions freezing at the glass temperature Tg = 235 K, is evidenced. The addition of BST particles qualitatively changes dynamics, converting the SA-type behaviour in PVDF to the clear Arrhenius one in BST/PVDF composite. The latter crossovers to the relaxor-type SA dynamics on cooling, exactly at the glass temperature of PVDF. The preliminary model explaining such unique behaviour is proposed. For the consistent portraying of the SA evolution of primary relaxation times in PVDF and BST/PVDF, the activation energy index analysis was carried out and the new equation, entropy and symmetry controlled, is introduced. Studies are accomplished by the analysis of the ferroelectric-paraelectric transition in PVDF and for the composite system. They led to the discovery of the strong pretransitional anomaly of dε∕dT, extending even to the vicinity of the room temperature, The semi-discontinuous nature of melting in PVDF and its composites, with the discontinuity metric △T ≈ 20 K is suggested. Graphical abstract
Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-100130-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:3:d:10.1140_epjb_e2020-100130-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2020-100130-y
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().