Green-Kubo algorithm in the calculation of anomalous heat conduction for models with and without sound mode
Dan Mao and
Lei Wang ()
Additional contact information
Dan Mao: Renmin University of China
Lei Wang: Renmin University of China
The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 3, 1-7
Abstract:
Abstract Green-Kubo algorithm is an effective method for the calculation of transport coefficients in terms of integral of the current correlation function. In this paper, we investigate two important issues of this algorithm in the calculation of anomalous heat conduction. Firstly, since the correlation function should be calculated in the thermodynamic limit which is never possible in practise, the necessary size of system should be determined. Secondly and more importantly, in the anomalous heat conduction cases, in order to work out a length-N-dependent heat conductivity κ(N), we need to set a cutoff time τN as a upper limit of the integral. τN is commonly set to be proportional to N. However it has been observed very recently that in a model without sound mode τN is not that simple but grows as Nν with ν = 1.5 instead. We apply the algorithm to two typical one-dimensional models with and without sound modes, and find that the necessary size is extremely small for the model without sound mode, but relatively large for the model with strong sound modes. By studying the heat diffusion process via the local energy correlation, the value of τN can also be quantitatively determined. Graphical abstract
Keywords: Statistical; and; Nonlinear; Physics (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-100452-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:3:d:10.1140_epjb_e2020-100452-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051
DOI: 10.1140/epjb/e2020-100452-2
Access Statistics for this article
The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio
More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().