EconPapers    
Economics at your fingertips  
 

Theoretical investigation of the thermoelectric properties of ACuO2(A = K, Rb and Cs)

Mirriam Chepkoech (), Daniel P. Joubert and George O. Amolo
Additional contact information
Mirriam Chepkoech: The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand
Daniel P. Joubert: The Technical University of Kenya (TU-K)
George O. Amolo: The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand

The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 6, 1-12

Abstract: Abstract The electronic, structural, mechanical, lattice dynamics and the electronic transport properties of ACuO2(A = K, Rb and Cs) are investigated using density functional theory. The calculated elastic constants and their related elastic moduli, phonon spectra and electronic transport properties of these compounds are reported here for the first time. The predicted structural parameters are in excellent agreement with the available experimental data. The obtained lattice thermal conductivities, κL, of ACuO2 (A = K, Rb and Cs) are found to display strong anisotropic features along the a, b and c directions. It is also found that the average room-temperature κL of CsCuO2 is lower than those of RbCuO2 and KCuO2, which is due to its smaller group velocities in the low frequency region i.e., 0 ~ 3 THz. Our calculations also show that the acoustic phonon modes contribute considerably to the total κL along the a and b directions. The electrical conductivity (σ) and electronic thermal conductivity (κel) of ACuO2 (A = K, Rb and Cs) show anisotropic features i.e., σ and κel along the c-axis is significantly larger than along the a and b-axes. Meanwhile, our obtained Seebeck coefficient (S) values are found to be 248, 110 and 91 μV/K for p-doped KCuO2, p-doped RbCuO2 and p-doped CsCuO2 respectively at 300 K along the b-direction. These S values are found to be of the same order of magnitude with that of well known thermoelectric (TE) material, Bi2Te3 (with S of 200 μV/K at 300 K) and the recently discovered metal oxide TE material, NaCo2O4 (with S of 100 μV/K at 300 K). However, our computed figure of merit (ZT) values of ACuO2 (A = K, Rb and Cs) are found to be very small as compared to known thermoelectric materials. For instance, our highest computed ZT value is 0.11 for p-type KCuO2 along the c-direction at 750 K, 0.15 for p-type RbCuO2 and 0.25 for p-type CsCuO2 along the a-direction at 800 K. These small ZT values are caused by large values of the lattice thermal conductivities. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-100614-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:6:d:10.1140_epjb_e2020-100614-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2020-100614-2

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:93:y:2020:i:6:d:10.1140_epjb_e2020-100614-2