EconPapers    
Economics at your fingertips  
 

Homogenization method for one-dimensional photonic crystals with magnetic and chiral inclusions

Javier Flores Méndez, Benito Zenteno Mateo, Mario Moreno Moreno, Alfredo Morales-Sánchez, Gustavo M. Minquiz, Hector Vázquez Leal, Israel Vivaldo- De la Cruz, Silvia Cortés-López, Ana Cecilia Piñón Reyes and Roberto Ambrosio ()
Additional contact information
Javier Flores Méndez: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Benito Zenteno Mateo: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Mario Moreno Moreno: Instituto Nacional de Astrofísica, óptica y Electrónica
Alfredo Morales-Sánchez: Instituto Nacional de Astrofísica, óptica y Electrónica
Gustavo M. Minquiz: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Hector Vázquez Leal: Facultad de Instrumentación Electrónica, Universidad Veracruzana
Israel Vivaldo- De la Cruz: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Silvia Cortés-López: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Ana Cecilia Piñón Reyes: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina
Roberto Ambrosio: Benemérita Universidad Autónoma de Puebla-Ciudad Universitaria, Blvd. Valsequillo y Esquina

The European Physical Journal B: Condensed Matter and Complex Systems, 2020, vol. 93, issue 7, 1-12

Abstract: Abstract We have theoretically investigated the electromagnetic properties for one-dimensional (1D) photonic crystals with magnetic and artificial chiral inclusions in the quasi-static limit, that is when the size of the unit cell of the crystal is small with respect to the wavelength of the operating wave. We suggest a homogenization theory to determine the effective tensors of the optical response, to achieve this objective, we apply the Bloch’s plane waves method to describe the electromagnetic modes that can propagate in the periodic structure under consideration. Subsequently, the Maxwell’s “microscopic” equations are homogenized replacing the Bloch waves by plane waves that attenuate the fast oscillations of the electromagnetic fields within the unit cell (macroscopic level), i.e., the average-macroscopic electromagnetic fields are determined by the component corresponding to the null reciprocal lattice vector in the expansion in plane waves. The numerical implementation of our theory of homogenization allow us to study the effective bianisotropic electromagnetic response (effective dielectric permittivity, magnetic permeability and electric-magnetic coupling tensors, this last is described by an effective chiral parameter) for 1D photonic crystals whose constituents in its unit cell are a dielectric layer and another magnetic (both isotropic and anisotropic) or chiral inclusion layer. The results are illustrated and discussed by the effective parameters as a function of the filling fraction of the inclusion and show for each case of homogeneous effective medium different components of anisotropy in the electromagnetic response of permittivity, permeability and chirality with the increase of the filling fraction. Besides, the behaviors of the obtained graphs agree well with Rytov’s formulas of effective medium. The relevant results of this theory will be very useful for the study and better understanding of the nature and design of metamaterials with predetermined anisotropic optical properties. Graphical abstract

Keywords: Solid; State; and; Materials (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1140/epjb/e2020-10095-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:eurphb:v:93:y:2020:i:7:d:10.1140_epjb_e2020-10095-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10051

DOI: 10.1140/epjb/e2020-10095-4

Access Statistics for this article

The European Physical Journal B: Condensed Matter and Complex Systems is currently edited by P. Hänggi and Angel Rubio

More articles in The European Physical Journal B: Condensed Matter and Complex Systems from Springer, EDP Sciences
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:eurphb:v:93:y:2020:i:7:d:10.1140_epjb_e2020-10095-4